PPM: one step to practicality
Dmitry Shkarin
Institute for Dynamics of Geospheres, Moscow, Russia
E-mail: dmitry.shkarin@mtu-net.ru

PPM is one of the most promising lossless data compression algorithms using
Markov source model of order D. Its main essence is the coding of a new (in the given
context) symbol in one of inner nodes of the context tree; a sequence of the special
escape symbols is used to describe this node. In the reality, the majority of symbols
is encoded in inner nodes and the Markov model becomes rather conventional. In
spite of the fact that PPM algorithm achieves best results in comparison with others,
it is used rarely in practical applications due to its high computational complexity.
This paper is devoted to the PPM algorithm implementation that has complexity
comparable with widespread practical compression schemes based on LZ77, LZ78
and BWT algorithms. This scheme has been proposed in [1] and named PPM with
Information Inheritance (PPMII).

1 Basic definitions

Let A be a discrete alphabet consisting of M > 2 symbols; 2" = zq,...,z,, ©; € A
be first n symbols of message; |o| be the length of sequence o or the cardinality of
set 0. The probability of symbol z,,; = a € A for a source with memory depends on
current contert Sq = Tp, ..., Tn_gr1 € A% d < D. The set of all possible contexts can
be presented as nodes in M-ary tree with depth D. Context (sequence) s describes a
path from tree root to the current node also denoted as s.

Usually the true conditional probabilities are unknown and the coding conditional
probabilities q(als) depend on characteristics of one or several subsequences z"(s),
x"(s) is the subsequence of all symbols x; such that z;_i,...,2;,_4 = s4. These
characteristics are: frequency f(als) = f(a|z™(s)) of symbol a in z"(s), alphabet
A(s) = A(s,2™(s)) = {a: f(als) > 0}, its cardinality m(s) = |A(s)| etc. Even at
small D, the number of model states is big, subsequences z"(s) are short in average,
and their statistics is insufficient for effective compression.

PPM algorithm [2] is based on an (implicit) assumption: the longer is the com-
mon initial part of contexts, the more (in average) similarity there is between their
conditional probability distributions. High PPM efficiency means this assumption is
fair for the majority of real sources.

Let Z,, be the set of nodes sy, d < D on the current branch z,,, z,_1, ... of context
tree; s(a) be the context with maximum length, for which f(als) > 0; d,,(a) = |s(a)| (if
such context is absent then d,(a) = —1); ¢(als) and g(esc|s) be the conditional

probabilities for symbol a € A(s) and for escape symbol. The escape symbol signals
a new symbol appearance in A(s).

The key feature of all PPM modifications is the representation of coding condi-
tional probability for any symbol a € A as

q"(alz"(s)) = [I1 Q(€80|3i)] ~qlalsq), d=dy(a) (1)

i=d+1
The product of escape conditional probabilities describes for the decoder a sequential
descent from sp to s(a) (if d,(a) = D then this product is equal to 1). Usually

q(als) = tj(fl(f)), Va € A (s); q(escls) = %, 2)

where A7 (s;) = A(s;)\A(sj+1), sj+1 is a child context of s; on the current tree
branch Z, (and vice versa, s; is a parent context for sjiy), t(-|s) are generalized
frequencies introduced in [1], T'(s) is the sum of all ¢(-|s). As a rule, ¢(+|s) are written
as t(a|s) = f(als) + ¢, t(esc|s) = vf(esc|s). For example, PPMC [3] and PPMD [4]
correspond to ¢ =0,y =1 and ¢ = —1/2, v = 1/2 respectively.

After encoding of current symbol a, it is necessary to update (to increase by one)
t(a|s) in various tree nodes s € Z,. Early PPM variants [2] used full updates when
frequencies are changed for all s € Z,,. Later PPM variants [3] use update exclusions
when frequencies are changed only in nodes with length |s| > d,(a). In some sense,
full updates and update exclusions correspond to the two ultimate cases.

During a descent along 7, with the help of escape symbols, one must eliminate
symbols already checked in higher order contexts (exclusions). Name such symbols
as masked symbols and contexts (not) containing such symbols — (n)m-contexts.
Designate s as a binary context if m(s) = 1 and only two probabilities are used, i.e.
q(als) =1 — q(escls).

2 Evaluation of generalized frequencies of symbols

1. Information inheritance. The main difficulty of all explicit context-based
modeling schemes is the statistics insufficiency in the higher order contexts. Many
ways have been proposed to overcome this problem: predictions weighting for lower
and higher order contexts (CTW, interpolated Markov model), symbol coding only
in contexts that have enough (by some criterion) statistics (LOE, state selection).
All these methods require a lot of computational resources and are unacceptable for
our purposes. We can take advantage of the similarity of distribution functions in
parent and child contexts and set the initial value ty(a|s) of the generalized symbol
frequency in the child context with regard to information about this symbol gathered
in the parent context. Such an approach has two virtues: firstly, reference to the
parent statistics occurs only at addition of a new symbol to the child context, i.e.
rarely enough, that causes existence of linear (not depending on tree depth) time
complexity solutions; secondly, due to the rare use of the parent statistics again, the
model can quickly adapt to the variations of character of input data.

The following notation is used below: s; is the new context (7'(s;) = 0) or the
context, to that new symbol a has to be added (¢(a|s;) = 0), sy is the longest context
which contains the current symbol a (s = s(a)). The addition of a new symbol to
the old context statistics will be our initial concern. Locally, at the given point of
the encoded text, it would be optimal immediately to use PPM-model of order £, i.e.
to reduce the context tree depth to k; in that case, we eliminate errors associated
with inaccuracy of the escape probabilities estimation. On the other hand, we need
only statistics similar to statistics in s;, for this reason, we must perform reduction of
tree depth only along current context branch Z,,. Such tree depth reduction removes
distortions of the probabilities distribution brought in by the symbol masking under
update exclusions and increases precision of symbol probability estimation in s;.

Now, we can equate symbol a probability estimations in s; and in sj for tree with
pruned branch:

to(als;) _ t(alsk)
T(si) +to(alsi) T(sk) +Tix’
where T; . is the statistics gathered in contexts s;, k < j <:

(3)

i

m(s;)
Tiw= (T(Sj) — t(esc|s;) — Z:l to(an|sﬂ'))

j=k+1

Equation (3) is too complex for calculations and requires an additional variable
containing the sum of ty(a,|s;) in each context structure. As a rule, the escape
happens to the parent, i.e. k = ¢ — 1; if it is not true then statistics gathered in
intermediate contexts s; is small and consists mainly of the initial values #y(als;).
Therefore, we can neglect all intermediate s; in T; ;. We can also replace t(esc|s;)
and ty(ay,|s;) by their evaluations in PPMD method. Resolving equation (3) relative
to the inherited frequency to(als;) and using aforesaid simplifications, we get formula:

to(a|8i) _ T(Sl) t(a|8k) (4)

T(sg) — t(alsk) + T(s;) — m(s;)

At deriving equations (3) — (4), it was implicitly assumed that ¢ (als;) estimation

is performed after statistics update in s;. The same argumentation can be repeated

for the case when inheritance is performed before statistics update; some intermedi-

ate cases are also possible. It requires an introduction of free parameter 7: 7 = 0

corresponds to information inheriting after statistics update and 7 = 1 corresponds

to inheriting before statistics update. Repeating all previous reasonings as well for
the new context (7'(s;) = 0), we come to the final formula:

to(escls;) - (t(a|sy) — 1) N
T(s:) — t(alsy) , T(s:) =0
T(s;) - (t(a|sk) — 1) .
T(s) = Halse) + 1) ~m(s) L) 70

where t(esc|s;) should be specified by extraneous methods (PPMD, for example).
By experiments, the optimal value of 7 is approximately 1/4 for PPMD method.

At deriving equation (5), it was supposed that #y(a|s;) is calculated immediately
after the first advent of @ in s;. However, at large D, it is more preferable to delay cal-
culation of (5) until s; is encountered next time. In this case, the symbols probabilities
distribution in another parent sj. = s'(a) is usually more similar to the distribution in
s; and calculated to(als;) corresponds better to unknown conditional probability of a
in s;. On the other hand, such “delayed” symbol addition to s; requires an additional
searching of a in s} and additional searching of s), itself; it would lead to the increase
of algorithm complexity. For this reason, delayed symbol addition is performed for
the new contexts only (7'(s;) = 0).

2. Update exclusions modification. For original PPM (without information
inheritance), the parent contexts are used only for coding of new symbols which were
not seen earlier in the child contexts. Their importance raises when the information
inheritance is added, now they are also used for #y(a|s) calculation. Therefore, the
speed of statistics gathering in the parent contexts becomes more important. The
conventional update exclusions mechanism does not meet these requirements, the full
updates work badly also.

The update exclusions can be modified in the following way: along with #(a|sy)
increment in sy = s(a), we shall increase the frequency in its parent s, 1, but with
weight 1/2. At conventional update exclusions, the symbol frequency and its proba-
bility estimation in the parent s; are proportional to the number of child contexts s,
containing this symbol. Not to lose completely this property, the statistics update in
sk—1 must be stopped when ¢(a|s;) reached some threshold. Experimentally, it was
found equal to 8.

Proposed update exclusions modification requires one additional scanning of s;_;
and this scanning can increase the execution time nearly twice in some cases. We
can suppose if the symbol was processed by the longest possible context (d,(a) = D)

to(a|3i):7'+ ,OSTS]_, (5)

then statistics in this tree branch is already stable, the escape probability is small
and here is no need to update statistics in the parent. With this assumption, the
execution time is increased by 2-10% only (it depends on D).

3 Evaluation of escapes probabilities

For estimation of escape probability, we shall divide all contexts into three types:
binary contexts, nm-contexts and m-contexts. Consider each type of contexts sepa-
rately.

1. Escape probability for binary contexts. At big enough D, the symbol
encoding begins at binary context in 60 — 80% of cases. The coding probability of
a single symbol for such contexts is strongly connected to the escape probability:
q(a|s) = 1 — q(esc|s). For these reasons, accurate estimation of g(esc|s) gives sig-
nificant gain for compression efficiency. We shall construct an additional model for
q(escls) estimation dependent on some set of parameters w(s) = (wy,...,w,) asso-
ciated with the current context. Not to confuse this model with the basic model, we
shall denote it as SEE (secondary escape estimation) model [5] and parameters of this
model — SEE-contexts. Escape probability for each SEE-context is computed by the
usual formula for a mean

S(w) N(w)
q(esclw) = (0) N(w)’ S(w)]2::1 6;(w), (6)

where §; = 1 when a new symbol has appeared on j-th step and ¢; = 0 otherwise,
N(w) is the number of tests.

Scheme with continuous rescaling of statistics is used in PPMII to improve algo-
rithm adaptivity. The number of tests is fixed formally: N = Ny and (1 — 1/N) is
the scaling factor. On j-th step, ¢, is added to the sum S and the mean value (0)
is subtracted from S, i.e. change of S is AS = ¢; — S/N, for each step. N, can
be chosen as power of two to eliminate division operation, thus, the total number
of operations per one estimating-updating cycle is one addition, one subtraction and
one arithmetic shift. This simple method of the mean estimation can be applied to
various statistical and modeling programs and, actually, it is intensively used in [6].

The number h of w(s) components, their quantization and their influence on
q(esc|lw) can be found experimentally only. They are enumerated below in the de-
creasing influence order.

1) Of course, the escape probability depends on generalized symbol frequency
t(a|s) to a great degree. This variable is quantized to 128 values.

2) PPM uses similarity of parent and child contexts, therefore, the alphabet size
m(s;_1) of the parent has strong effect on the probability of escape from the child s;.
This w(s) component is quantized to 4 values.

3) The experiments show that highly predictable data blocks are interleaved with
not so predictable ones for real sources. The size of such block is small (3-5 symbols),
it corresponds to a natural language text segmentation into words and parts of words.
The probability of the previous encoded symbol in the previous context is included
into w(s) to trace switching between blocks. This variable is quantized to 2 values.

4) The current coded symbol mostly correlates with the previous symbol. It is
inexpedient to include the whole previous symbol into w(s) because the number of
SEE-contexts would be too big and the frequency of each SEE-context would be too
small. Only single-bit flag is included into w(s). The flag value is set to 0 if two
higher bits of the previous symbol are zeroed and to 1 otherwise.

5) The long block of symbols with length L is the sequence of input symbols for
which the escapes to lower orders did not occur and the coding probability for L

symbols of this sequence was larger than 1/2. It is quite probable the PPM model
with D < L works badly for such blocks. Special flag is included into w(s) to signal
the occurrence of a long block.

6) By analogy with 4), the flag built of two higher bits of single observed symbol
of binary context is added to SEE-context.

Thus, the SEE-model for binary contexts consists of 128 x 4 x 2* = 8192 SEE-
contexts. Quantization details of various w(s) components can be found in [7]. The
SEE-model performs averaging over large contexts groups, so it depends weakly on
statistical outliers at small T'(s). Therefore, the best value of the free parameter 7
in (5) is 7 = 1 and initial estimation of ¢y (esc|s) is performed by PPMC: ty(esc|s) = 1.

2. Escape frequency for nm-contexts. This type of contexts is a more difficult
case because such contexts occur rarely at high D and an adaptive method (similar
to aforedescribed one) would not gather enough statistics. For this reason, the semi-
adaptive method is chosen that has some parallel with PPMD method.

Suppose the symbols probabilities distribution in the context is geometrical, i.e.

qanls) =p"(1—p), O0<p<l, n=0,1,2,.. (7)

Then, at binary to nonbinary context transformation, the base number p can be
found with the help of Sec. 3.1 results. At known p, the escape frequency tgs(esc|s)
can be calculated for the context containing two symbols. These calculations can
be performed numerically only because symbols may occur not neccessarily in the
decreasing probability order.
Furthermore, t(esc|s) value is changed only at addition of a new symbol to the
context similarly to PPMD method. The increment of ¢(esc|s) is
1/2, 4m(s) < m(s(a))
b = { 1/4, 2m(s) < m(s(a)) (8)
0, for all other cases
The additional adjustment is required, when the new symbol has a small probability:

9y = 1 — to(als), Va: to(als) <1 9)

The final formula is those:
t(esc|s) = toa(escls) + Z (01(s, s(a)) + da(a, s)), (10)

where tgs(esc|s) is calculated only once, at binary to nonbinary context transfor-
mation, the summation is performed at each new symbol occurrence, §; and d, are
defined by equations (8) — (9).

3. Escape frequency for m-contexts. The escape probability for these con-
texts depends mostly on T'(s). This quantity must be presented with very high
precision resulting in the large number of SEE-contexts and the low frequency of
their occurrence. Therefore, we shall model the behavior of ¢(esc|s) which depends
weakly on the summary frequency, but not ¢(esc|s). The mean estimation of ¢(esc|s)
is performed similarly to the mean estimation in Sec. 3.1 except for the beginning of
coding (at small N(w)). At the beginning of coding, the formally fixed number of
tests N varies under the law N, = 24108 N'(W)I ' N'(w) = max (4, N(w)), that leads
to the faster adaptivity of the mean estimation.

Components of vector w(s) are enumerated below for this type of contexts:

1) The escape frequency highly depends on |A™(s)], it is quantized to 25 values.

2) The one bit flag is included into SEE-context that contains the comparison
result for m(s;) — m(s;11) and m(s;y1).

3) Similar flag, built of comparison result for m(s;—1) —m(s;) and m(s;) —m(s;y1),
is included too.

4) It is the same as 4) item in Sec. 3.1 enumeration.

5) Some correlation does exist between t(esc|s) and the average generalized fre-

quency t(s) = T(s)/(m(s) + 1); it is quantized to 2 values.
Thus, the total number of SEE-contexts is 25 x 2* = 400.

4 Implementation details

Let’s list the most time expensive operations:

1) searching for the current coded symbol a in the list of all symbols seen in s and
estimating the probability interval for this symbol, denote this operation as prob(s, a);

2) escaping to the parent context in the case of symbol a not found in s, denote
this operation as suffiz(s);

3) finding the next active context after symbol a encoding, denote this operation
as successor(s, a), it can be written formally:

sa,

s| <D
successor(s,a) = { suffir(s)a, ISI -D (11)

The operation prob(s,a) is the most time consuming one, it can take up to a half
of the execution time. The searching of the current symbol is done by the usual linear
scan of the array of TRANSITION structures. TRANSITION structure contains symbol a
and its generalized frequency ¢(a|s). The array is sorted in the decreasing frequency
order for the speed-up of the search. More complex search methods would not give
any speed gain because, firstly, the alphabet size m(s) is usually small and, secondly,
it is necessary to perform exclusions while searching.

The operation suffiz(s) can be eliminated by saving a reference to the parent
s;—1 in CONTEXT structure containing characteristics of the context s;. The operation
successor(s, a) is also eliminated by saving the corresponding reference in TRANSITION
structure. For memory saving, CONTEXT structure is created only for repeatedly seen
contexts (T'(s) > 0); the position in the coded string is only stored for new con-
texts (T'(s) = 0).

Graphical representation of the used data structures is drawed on Fig.1. The
figure shows that the proposed algorithm wastes 12 bytes for each repeated (binary or
nonbinary) context and 6 bytes for each transition structure at the nonbinary context.
For comparison, one of the most memory efficient PPM/PPM* implementations [8]
requires 8 4-byte machine words for the nonbinary context structure, 6 words for the
binary one and 6 words for the transition structure at the nonbinary context.

The precision of the frequency representation is 1 for binary contexts and 1/4
for nonbinary ones. The statistics in nonbinary context is scaled (all frequencies
are halved) when the value of one of frequencies exceeds threshold 30. Simplified
variant of the range coder [9] is used as an entropy coder. The division operation
in equation (5) is approximated by series of comparisons, other used approximations
can be found in [7].

CONTEXT structure TRANSITION structure
m(s) > 1 m(s) =1
m(s) | T(s) m(s) | a |t(als)
link to TRANSITIONSs array TRANSITION structure | link to successor(s, a)
link to suffiz(s) link to suffiz(s)

Figure 1. Data structures of PPMIT algorithm.

5 Complicated PPMII (cPPMII)

PPMII algorithm demonstrates nice results, so it becomes to be interesting to look
at maximal compression efficiency that similar approach can provide. We will not
limit ourselves by the requirement of low computational complexity in this section.

Some improvements can be obtained by mere removing of introduced simplifi-
cations. Delayed addition of a new symbol to the context (Sec. 2.1) is performed
for any contexts, but not just for binary ones. For the update exclusions modifica-
tion (Sec. 2.2), the statistics is updated at any context length including |s(a)| = D
case. Moreover, the statistics is updated for three contexts in the parent-child chain
with increments 1/2, 1/4, and 1/8. The precision of the frequency representation is
increased up to 1/8. Other improvements require individual considerations.

1. Improving probability estimation for more probable symbols and
for less probable ones. Statistics in the parents is accumulated faster than in the
“young” child contexts (with small T'(s)), so there is good reason to use the parent
statistics repeatedly.

The generalized frequency of each of more probable symbols (the symbol a,, falls
into this group when ¢(a,,|s) > q(arps|s)/2, ayrps means the most probable sym-
bol (MPS) in the context) is corrected when the child s; is young (7'(s;) < T'(s4-1))
and symbol a,, probability estimation in s; is less than the same estimation in s; ;.
New value t; (a,,|s;) is calculated as a weighted average of ¢(a,|s;) and of the adjusted
frequency value t'(a,,|s; 1) in the parent:

T(si) - tlaml|si) +T(si—1) - t'(aml|si—1)
T(SZ) + T(Sifl) ’

ti(amlsi) = (12)

where
T(si) — t(als:)
T(Si_l) - t(a|si_1)’
under conditions (q(am|s;) > q(amps|s:)/2NT(s;) < T(si—1)Ng(am|s;) < qlaml|si-1)).
The same t(a,|s;) correction is performed while inheriting to new contexts.

The probability overestimation of less probable symbol (the symbol «; falls into
this group when #(a;|s) < 2) can have ill effect on g(a|s) estimation in the young
contexts (the context s falls into this group when #(s) < 4). Therefore, t(a|s) is
simply incremented by 3/4, but not by 1:

At(ay)s) = 3/4, (t(a]s) <2Nt(s) < 4) (13)

t'(a|si_1) = t(CL|Si_1)

2. Improving adaptive mean estimation. The mean estimation method
(Sec. 3.1) requires minimal computational resources, but it adapts too slowly at small
N(w), therefore cPPMII uses its modification mentioned in Sec. 3.3 everywhere.

Adaptation speed of the mean estimation can be additionally increased if some
suppositions are made on the mean dependency of vector w(s) components. Suppose
some variable z (the probability, for example) monotonically depends on the discrete
variable 4, i.e. (x(i)) ~ ((x(i—1))+ (z(i+1)))/2. Then, at small N(7), we can update
statistics not only for i value, but also for (i — 1) and (i + 1), with some small weight
that decreases while N (i) increases. For calculations simplicity, this weight is chosen
as equal to 2-L1eND)/2] and it is set to zero after exceeding some threshold. This
technique is applied to any variable 7 that is quantized to more than two values.

3. Adaptive probability estimation for MPS. Compression efficiency is
markedly affected by the precision of MPS probability estimation, therefore, after
frequency correction (see Sec. 5.1), an adaptive probability estimation for MPS is

performed. The adaptive model for MPS is built similar to the model for escape
symbols. The behavior of t(ayps|s) is modeled for nm-contexts and the behavior
of g(anps|s) is modeled for m-contexts. By analogy with SEE, this method can be
called SSE (Secondary Symbol probability Estimation).

For nm-contexts, vector w(s) consists of:

1) the generalized symbol frequency t(ayps|s), it is quantized to 68 values;

2) the one bit flag indicating whether statistics rescaling has been performed;

3) the comparison result of current context length |s| with the average used context
length (d,(a)) (averaging is performed over last 128 symbols);

4) the same as 4) and 6) items in Sec. 3.1 enumeration;

For m-contexts, vector w(s) consists of:

1) the probability estimation g(ay ps|s), it is quantized to 40 values;

2) the comparison result of average masked and nonmasked symbols frequencies;

3) the one bit flag indicating whether only one symbol is not masked;

4) the same as 2) and 4) items in previous enumeration;

4. Additional SEE-contexts components. Additional SEE-context fields for
binary contexts are as follows:

1) the comparison result of m(s;_,) with m(s,), where s, is the previous context;

2) the number of binary parent contexts, it is quantized to 2 values;

3) the flag built of two higher bits of symbol preceding the already encoded symbol;

4) the same as 3) item in the first Sec. 5.3 enumeration;

Two additional w(s) components are added to the SEE-model for m-contexts.
They are the same as 2) items in both Sec. 5.3 enumerations.

5. Adaptive escape frequency estimation for nm-contexts. The SEE-
model for these contexts is built similarly to the one for m-contexts, i.e. t(esc|s) is
modeled, but not g(esc|s). w(s) components are as follows:

1) the alphabet size m(s), it is quantized to 25 values;

2) the result of calculation (4m(s;) > 3m(s;_1));

3) the same as 4) — 6) items in Sec. 3.1 enumeration, 2) — 3) items in the first
Sec. 5.3 enumeration and 1) item in Sec. 5.4 enumeration;

6 Experimental results

PPMII algorithm and its complicated modification were implemented on C++
programming language and these implementations are publicly available at [7]. The
executable file PPMd . exe corresponds to the basic algorithm and PPMonstr.exe corre-
sponds to cPPMII. All experiments were carried out on the standard Calgary corpus.

1. Evaluation of contribution of each algorithm part. Unweighted average
bits per byte (bpb) for all 14 corpus files are presented in Table 1 for each PPM
algorithm modification as described in sections 2-3. Description of each column:

PPMD - initial PPMD by P.G.Howard (implementation of author);

+ [I - previous scheme plus information inheritance (Sec. 2.1);

+ UEM - previous scheme plus update exclusions modification (Sec. 2.2);

+ SEE1 - previous scheme plus SEE-model for binary contexts (Sec. 3.1);

+ EE1 - previous scheme plus escape estimation for nm-contexts (Sec. 3.2);
+ SEE2 — previous scheme plus SEE-model for m-contexts (Sec. 3.3);

2. Time and memory requirements. In the second experiment, time and
memory requirements of PPMII/cPPMII implementations were compared with the
widespread practical implementations of LZ77 (ZIP [10]) and BWT (BZIP2 [11]) al-
gorithms and, also, with the most powerful implementation (PPMZ2 [12]) of PPM*

Table 1. PPMII: step by step.

Model order PPMD + 1l + UEM + SEE1 + EE1 + SEE2
2 2.790 2.766 2.766 2.767 2.767 2.759
3 2.427 2.387 2.387 2.382 2.379 2.366
4 2.310 2.254 2.254 2.235 2.230 2.212
5 2.290 2.215 2.211 2.185 2.178 2.158
6 2.297 2.204 2.197 2.166 2.158 2.137
8 2.319 2.196 2.186 2.150 2.142 2.118
10 2.339 2.195 2.184 2.143 2.136 2111
16 2.369 2.194 2.182 2.137 2.130 2.104

algorithm. Results of measurement! of compression efficiency (average bpb), compres-
sion time? (seconds) and maximal memory requirements (megabytes) are presented
in Table 2. As a demonstration of PPM complexity reduction, the last line contains
the results for author’s implementation of PPMD algorithm.

The table shows that basic PPMII algorithm provides wide range of opportunities.
At small D (2-3), it gives compression efficiency comparable to the one of ZIP or of
BZIP2 with faster compression speed and smaller memory requirements than BZIP2
ones. At medium D (4-6), PPMII efficiency is noticeable better than ZIP and BZIP2
ones and time/memory requirements remain moderate. Lastly, at high D (8-16),
PPMII outperforms the best of described programs PPMZ2 by all characteristics.
cPPMII gives even better efficiency, but its low execution speed is not very promising.

Table 2. Integral characteristics of various compressors.

Model PPMII cPPMII
order |Average bpb| Time, sec. |Memory, MB| Average bpb| Time, sec. |Memory, MB
2 2.759 3.18 0.6 2.716 8.51 1.1
3 2.366 3.79 1.0 2.321 10.60 1.5
4 2.212 4.51 1.9 2.170 12.46 2.4
5 2.158 5.21 3.5 2.114 14.00 4.0
6 2.137 5.88 5.6 2.090 15.21 6.1
8 2.118 6.76 10.1 2.067 16.85 10.6
10 2.111 7.25 13.3 2.057 17.57 13.8
16 2.104 7.74 16.2 2.047 18.56 16.7
For comparison
ZIP -9 2.693 5.93 0.5
BZIP2 -8 2.368 5.87 6.0
PPMZ2 2.139 not tested > 100
PPMD-5 2.290 4.67 3.5

3. Compression efficiency. In the last experiment, the more detailed com-
parison is performed for proposed algorithms and for algorithms described in the
literature. Following compression schemes are presented in Table 3: the imple-
mentation [13] of CTW method [14] with binary decomposition (results were taken
from [15]), the associative coder (ACB) by G.Buyanovsky [16], the best of S.Bunton’s
FSMX coders [8], PPMZ2 by C.Bloom [12]. Next column contains PPMII results

LAll programs (excluding PPMZ2) were compiled with the same compiler (Intel C v. 4.0), at
the same compilation options. The experiments were performed on PII-233 (overclocked up to 292)
MHz computer with 64 MB RAM under OS MS Windows98 and FAT32 file system.

2PPMZ2 execution time was not measured due to memory insufficiency.

Table 3. Compression efficiency for various compression schemes.

File CTW ACB FSMX | PPMZ2 || PPMII-8 | cPPMII-8 |cPPMII-16 |cPPMII-64
bib| 1.782 | 1.935 | 1.786 | 1.717 1.732 1.694 1.679 1.676
bookl | 2.158 | 2.317 | 2.184 | 2.195 2.192 2.136 2.135 2.135
book2 | 1.869 | 1.936 | 1.862 | 1.843 1.838 1.795 1.782 1.782
geo | 4.608 | 4.5556 | 4.458 | 4.576 4.349 4.163 4.159 4.158
news | 2.322 | 2317 | 2285 | 2.205 2.205 2.160 2.142 2.137
objl| 3.814 | 3.498 | 3.678 | 3.661 3.536 3.507 3.497 3.498
obj2 | 2473 | 2.201 2.283 | 2.241 2.206 2.154 2.118 2.110
paperl | 2.247 | 2.343 | 2.250 | 2.214 2.194 2.152 2.144 2.142
paper2 | 2.190 | 2337 | 2.213 | 2.184 2.181 2.130 2.124 2.124
pic| 0.800 | 0.745 | 0.781 0.751 0.757 0.721 0.715 0.704
progc | 2.330 | 2.332 | 2.291 2.257 2.215 2.178 2.161 2.161
progl | 1.595 | 1.505 | 1.545 | 1.445 1.470 1.433 1.398 1.390
progp | 1.636 | 1.502 | 1.531 1.448 1.522 1.489 1.414 1.391

trans | 1.394 | 1.293 | 1.325 | 1.214 1.257 1.228 1.186 1.172

Average | 2.230 | 2.201 2177 | 2.139 2.118 2.067 2.047 2.041

for D = 8 and last three columns contain cPPMII results for D = 8,16,64. It is
necessary to emphasize the CTW implementation [13] uses symbol decomposition
especially optimized for English texts.

As opposed to the other PPM schemes, PPMII works well enough for nontextual

data (geo, obj1, obj2). Now, it is really — universal data compression ;-).

References.

1.

2.

10.

11.
12.
13.

14.

15.

16.

Shkarin, D. (2001) Improving the efficiency of PPM algorithm. Problems of Information Trans-
mission, 34(3):44-54, in Russian.

Cleary, J.G. and Witten, L.H. (1984) Data compression using adaptive coding and partial string
matching. IEEE Trans. on Comm., 32(4):396-402.

. Moffat, A. (1990) Implementing the PPM data compression scheme. IEEE Trans. on Comm.,

8(11):1917-1921.

. Howard, P.G. (1993) The Design and Analysis of Efficient Lossless Data Compression Systems.

PhD thesis, Brown University.

. Bloom, C. (1998) Solving the Problems of Context Modeling. www.chloom.com/papers/.
. Shkarin, D. (1999) BMF — lossless image compressor. ftp.elf.stuba.sk/pub/pc/pack/bmf_1_10.zip
. Shkarin, D. (2001) PPMd — fast PPM compressor for textual data.

ftp.elf.stuba.sk/pub/pc/pack/ppmdh.rar.

. Bunton, S. (1996) On-Line Stochastic Processes in Data Compression. PhD thesis, University

of Washington.

. Martin, G.N.N. (1979) Range encoding: an algorithm for removing redundancy from a digitised

message. Presented to The Video & Data Recording conference. Southampton.

InfoZIP Group (1999) Zip v.2.83 — compression and file packaging utility.
www.cdrom.com/publinfozip/.

Seward, J. (2000) BZip2 v.1.0 — block-sorting file compressor. www.muraroa.demon.co.uk.
Bloom, C. (1999) PPMZ2 — High Compression Markov Predictive Coder. www.cbloom.com/src/.
Volf, P.A.J. (1996) Text compression methods based on context weighting. Technical report, Stan
Ackermans Institute, Eindhoven University of Technology.

Willems, F., Shtarkov, Y. and Tjalkens, T. (1995) The context-tree weighting method: Basic
properties. IEEE Trans. on Inf. Theory, 41(3):653-664.

Volf P.A.J and Willems F.M.J. (1998) Switching between two universal source coding algorithms.
Proc. IEEE Data Compression Conf. pp.491-500.

Buyanovsky, G. (1994) Associative coding. The Monitor, 8:10-19, in Russian.

